PTPN22 Silencing in the NOD Model Indicates the Type 1 Diabetes–Associated Allele Is Not a Loss-of-Function Variant

نویسندگان

  • Peilin Zheng
  • Stephan Kissler
چکیده

PTPN22 encodes the lymphoid tyrosine phosphatase (LYP) and is the second strongest non-HLA genetic risk factor for type 1 diabetes. The PTPN22 susceptibility allele generates an LYP variant with an arginine-to-tryptophan substitution at position 620 (R620W) that has been reported by several studies to impart a gain of function. However, a recent report investigating both human cells and a knockin mouse model containing the R620W homolog suggested that this variation causes faster protein degradation. Whether LYP R620W is a gain- or loss-of-function variant, therefore, remains controversial. To address this issue, we generated transgenic NOD mice (nonobese diabetic) in which Ptpn22 can be inducibly silenced by RNA interference. We found that Ptpn22 silencing in the NOD model replicated many of the phenotypes observed in C57BL/6 Ptpn22 knockout mice, including an increase in regulatory T cells. Notably, loss of Ptpn22 led to phenotypic changes in B cells opposite to those reported for the human susceptibility allele. Furthermore, Ptpn22 knockdown did not increase the risk of autoimmune diabetes but, rather, conferred protection from disease. Overall, to our knowledge, this is the first functional study of Ptpn22 within a model of type 1 diabetes, and the data do not support a loss of function for the PTPN22 disease variant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CRISPR-Cas9–Mediated Modification of the NOD Mouse Genome With Ptpn22R619W Mutation Increases Autoimmune Diabetes

An allelic variant of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), PTPN22(R620W), is strongly associated with type 1 diabetes (T1D) in humans and increases the risk of T1D by two- to fourfold. The NOD mouse is a spontaneous T1D model that shares with humans many genetic pathways contributing to T1D. We hypothesized that the introduction of the murine orthologous Ptpn22(R619W) muta...

متن کامل

Lack of Association between PTPN22 (+1858 C>T) rs2476601 polymorphism and susceptibility to rheumatoid arthritis (RA) in Northeast of Iran

Background and objectives: Rheumatoid arthritis (RA) is an autoimmune disease with a complex genetic background. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a lymphoid specific protein tyrosine phosphatase which is involved in negative regulation of T cell response. Several studies have assessed the association between PTPN22 single nucleotide polymorphisms (SNPs) with RA ...

متن کامل

Treatment effect of GABA on improve type one diabetes in NOD mice

Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...

متن کامل

ارتباط پلی مورفیسم 3'UTR(1484insG) از ژن پروتئین تیروزین فسفاتاز B1 با بیماری دیابت نوع2 ، مقاومت به انسولین و چاقی در یک جمعیتی از تهران

Background and Aim: Type 2 diabetes mellitus is a heterogeneous disorder resulting from a combination of genetic and environmental factors which contribute to pathogenesis by influencing beta cell function and tissue insulin sensitivity. Protein tyrosine phosphatase 1B (PTP1B)" efficiently dephosphorylates the insulin receptor and attenuates insulin signaling. Recently, a 1484insG variant of th...

متن کامل

Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice

By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.3. In this study, we define two additional Idd loci--Idd18....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013